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1 Introduction

Orientifold compactifications of Type IIB string theory on a Calabi-Yau threefold in the

presence of D3 and D7 branes can be geometrically described by F-theory compactified on

a Calabi-Yau fourfold [43, 45]. Type IIB is defined in a ten-dimensional Minkowski space

while F-theory requires two additional dimensions, which provide a geometric description

of the axion-dilaton field of type IIB as the complex structure of an elliptic curve (a two-

torus). Solutions of type IIB at weak coupling usually have a constant axion-dilaton field.

F-theory provides a description of solutions with a variable axion-dilaton field by allowing

the elliptic curve to be non-trivially fibered over a threefold. This construction provides a

beautiful identification of S-duality in type IIB as the modular group of the elliptic curve.

Type IIB and F-theory are both severely constrained by ‘tadpole conditions’ which en-

sure that the total D-brane charges in a compact space vanish as required by Gauss’s law.

Tadpole conditions realize the physics wisdom according to which, in a compact space, the

total charge should vanish since fluxes cannot escape to infinity. From a dynamical perspec-

tive, tadpole conditions are consistency requirements obtained from the local equations of

motion and/or the Bianchi identities by integrating them over appropriate compact spaces.
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The computation of tadpole conditions requires a detailed account of all contributions to

the D-brane charges. This is closely related to anomaly cancellations since the presence of

Chern-Simons terms in the D-brane action (needed for the cancellation of chiral and tensor

anomalies) implies that a D-brane usually carries lower brane charges. In particular, in

type IIB, a seven-brane has an induced D3 charge proportional to the Euler character-

istic of the complex surface (a cycle of real dimension four in the Calabi-Yau threefold)

on which it is wrapped. In F-theory, the induced D3 charge is proportional to the Euler

characteristic of the Calabi-Yau fourfold. It follows that in the absence of other sources

of D3 charge (like for example non-trivial fluxes), the consistency of the F-theory/type

IIB tadpole relations leads to relations between the Euler characteristics of the F-theory

fourfolds and the surfaces wrapped by the seven-branes.

The link between type IIB orientifolds and F-theory is clearly expressed in the case of

Z2-orientifold symmetry by Sen’s weak coupling limit of F-theory [43]. When the fourfold

is realized as an elliptic fibration over a threefold, and Sen’s weak coupling limit is used to

produce the associated Calabi-Yau threefold, the relations can be recovered, as we show in

this paper, at the price of dealing with singularities of the loci arising in the limit. In this

paper we analyze one representative class of examples of this situation, presenting both the

physical argument leading to the relation (§2), and a mathematical derivation of an identity

of Chern classes which implies it (§4). In its form arising from physical considerations,

the relation has the following shape. Let ϕ : Y → B be an E8 elliptic fibration over a

nonsingular threefold B, and assume that Y is a Calabi-Yau variety. Following Sen ([43]),

we can associate with Y a Calabi-Yau threefold X, obtained as the double cover ρ : X → B

ramified along a nonsingular surface O; at ‘weak coupling limit’, the discriminant of Y → B

determines an orientifold supported on O, and a D7-brane supported on a surface D in

X. Comparing the D3 tadpole condition as seen in F-theory and in type IIB leads to the

(tentative) relation

2χ(Y )
?
= χ(D) + 4χ(O) (1.1)

among Euler characteristics (cf. §2.6). However, the surface D is singular, and singular

varieties admit several possible natural notions of ‘Euler characteristic’; it is not a priori

clear which one should be employed as χ(D) in (1.1). By contrast Y and O are both

nonsingular, and χ(Y ), χ(O) must refer to the usual topological Euler characteristic.

Analyzing this situation with mathematical tools, we can prove (Theorem 4.6) that

in fact the relation (1.1) holds at the level of total homology Chern classes, provided that

suitable correction terms are factored in to account for the singularities of D:

2ϕ∗c(Y ) = π∗c(D) + 4 c(O) − ρ∗c(S) (1.2)

implying

2χ(Y ) = χ(D) + 4χ(O) − χ(S) . (1.3)

Here, D → D is a resolution of D (in fact, its normalization), π : D → B is the composition

D → D → B, and S stands for the pinch locus of D. If dimB = 3 (the case of physical

interest), χ(S) simply counts the number of pinch-points of D. However (and surprisingly)

(1.2) holds in arbitrary dimension, and independently of Calabi-Yau hypotheses. Thus,

– 2 –



J
H
E
P
0
3
(
2
0
0
9
)
0
3
2

it appears that the scope of the tadpole conditions is actually substantially more general

than the context in which they arise.

The term π∗c(D) could be interpreted as the (push-forward to B of the) stringy Chern

class of D, and the question remains of whether the corrected class π∗c(D) − ρ∗c(S),

resp. its degree χ(D)− χ(S), are mathematically ‘natural’ notions. We take a stab at this

question in §5, where a mechanism is proposed which appears to account precisely for the

needed correction term, at least in the class of examples considered in this paper. We point

out that the ingredients used to define the stringy Chern class (as in [3]) may in fact be

employed to define other notions of Chern classes and Euler characteristics χ(m) for singular

varieties, depending on a parameter m. Each value of this parameter corresponds to a

different candidate for ‘relative canonical divisor’ of the resolution map; for the examples

considered in this paper, m = 1 corresponds to the notion leading to stringy invariants,

while m = 2 corresponds to an alternative notion (leading to ‘arc’ invariants; the Ω-flavor

considered in [3]). As we will see in §5, χ(m) admits a well-defined limit as m → ∞; and

this Euler characteristic χ(∞) recovers precisely the relation (1.1) proposed by the string-

theoretic considerations (Theorem 5.1). Therefore, this appears to be the natural notion

in the context of this problem.

However, there is room for surprises, and it is not impossible that in more general

situations the singularities modify the tapdole relation in a different ways than we have

anticipated here. Although this will have no effect on the correctness of the mathematical

result of this paper (the physics providing just an ansatz from the mathematical perspec-

tive) it would surely reshape the physics. To settle the issue, a complete physical derivation

of the tapdole conditions taking into account the singularities would be appropriate. Tad-

pole conditions in string theory are usually obtained by a loop calculation or by using the

inflow mechanism. Both roads have their shortcoming in presence of singularities.1 It is

therefore refreshing to know that the point of view presented in this paper is corroborated

by an analysis of different physical aspects of the system ([7]). In particular it is shown

in ([7]) that the choice of the Euler characteristic χ(∞) is compatible with a “deconstruc-

tion” description of the brane configuration in terms of a system of D9-anti-D9 branes with

appropriate world-volume fluxes turn on.

This paper is aimed at both physicists and mathematicians; §2 is written with the

former public in mind, and §4 with the latter. In order to enhance readability, these

sections are essentially independent of each other, and the hurried reader of one sort may

ignore the section more squarely written for the other. But the most interesting aspect of

our results lies in the interplay between the two viewpoints.

We include in this introduction a few slightly more technical comments. The Chern

1A loop calculation requires a definition of the field theory in presence of singularities. This is usually

possible when the singularities are very mild like for example if they are of the orbifold type. Performing

an inflow calculation based on index theorems is also not free of additional assumptions since it will require

extending the usual index theorem to singular varieties. Such an extension would depend on the choice of

regularization of the singularities or in other words on the choice of definitions for the topological invariant

of a singular variety. As we have seen, several non-equivalent choices are possible.

– 3 –
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class identity we prove (Theorem 4.6) holds in arbitrary dimension, for varieties which

are not necessarily Calabi-Yau, and generalizes in the simplest possible way the relation

among Euler characteristics predicted by the tadpole condition presented in §2.6. In fact,

Theorem 4.6 is established by lifting to this level of generality the elementary Sethi-Vafa-

Witten formula (formula (2.12) in [44]) for the Euler characteristic of the fibration Y , and

comparing it with an analogous formula obtained at Sen’s weak coupling limit. We view

the Sethi-Vafa-Witten formula as a general statement equating the Euler characteristic

of the fibration with twice the Euler characteristic of a specific divisor G in the base

B of the fibration (Proposition 4.2). The arguments in §4 are streamlined by using the

calculus of constructible functions, which encodes the good properties of topological Euler

characteristic and (by a result of R. MacPherson) of Chern classes. The relevant facts

are recalled in §4. As a concrete example, we offer the following instance of the situation

considered in this article.

Example 1.1. A degree 24 hypersurface with equation y2 = z3+fz+g in weighted projective

space P1,1,1,1,8,12 (with y, resp. z of degree 12, resp. 8, and f , g general polynomials in the

other variables) determines a Calabi-Yau elliptic fibration Y → B, with B = P
3. Standard

methods (for example, judicious use of the adjunction formula) easily yield χ(Y ) = 23328.

Sen’s weak coupling limit leads us to consider surfaces O, resp. D in P
3 with equation

h = 0, resp. η2 − 12hχ = 0, where h, η, χ are general polynomials of degrees 8, 16, 24

respectively. Again, adjunction yields immediately that χ(O) = 304; as for D, the presence

of 8 · 16 · 24 = 3072 nodes at the intersection S given by h = η = χ = 0 has to be taken

into account, and gives χ(D) = 28864 − 3072 = 25792.

The associated Calabi-Yau threefold X at weak coupling limit is the double cover of

P
3 branched over O; D is the inverse image of D in X. The orientifold and D7 brane are

localized on O and D, respectively.

A simple local analysis shows that D is singular along a curve, with a set S of 3072

pinch-points corresponding to the set S of nodes on D. It also shows that D may be

resolved to a nonsingular surface D by blowing up the singular curve; the composition

π : D → D is found to be 2-to-1 everywhere except over S. In terms of constructible

functions, this says that the push-forward of the constant function 11D is

π∗(11D) = 2 · 11D − 11S :

the function which equals 2 on D r S and 1 on S. It follows then immediately that

χ(D) = 2χ(D) − χ(S) = 2 · 25792 − 3072 = 48512 ;

what’s more, the same relation must hold among the total Chern classes of these loci

(cf. property (2) in §4).

We stress that more sophisticated intersection-theoretic tools are not needed in order

to extract this information from the blow-up D → D. These simple considerations suffice

to verify the tadpole relation with pinch-point correction in this example:

2 · χ(Y ) = 2 · 23328 = 46656 = 48512 + 4 · (−304) − 3072 = χ(D) + 4χ(O) − χ(S) .
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Note that ignoring singularities would have led us to an embarrassing tadpole mis-

match between type IIB and F-theory at weak coupling2. The proof presented in §4 for

the general case (at the level of Chern classes, in arbitrary dimension and without Calabi-

Yau hypotheses) is no harder—modulo some intersection theory—than the proof sketched

above for Example 1.1. Indeed, the key observation in the proof of Theorem 4.6 is precisely

the same formula π∗(11D) = 2 ·11D−11S used above, which is just as easy to prove in general

as in Example 1.1. In §4 we also offer an alternative, slightly more sophisticated viewpoint

on such relations of constructible functions (by means of Verdier specialization, see Re-

mark 4.5) as a possible venue for more general results. Intersection-theoretic invariants of

singular varieties, including some computations involving blow-ups, also play a role in [9],

in a comparison between the E8 × E8 heterotic string and F-theory with G-fluxes.
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2 Physics

In this section we present in some detail the physical motivation for (1.1). Roughly speak-

ing, it results from a direct comparison of the D3 brane tadpole condition in type IIB and

in F-theory in the situation where no fluxes are turned on. We will introduce the necessary

notions in a pedagogic way from (§2.1) to (§2.5); readers familiar with Sen’s weak coupling

limit of F-theory, tadpole conditions, and dualities, could consider jumping immediately to

(§2.6), without great harm. In (§2.1), we give some basic notions on D-branes in type II

string theories; in (§2.2) we review the (S-T-U-)dualities among type IIA, type IIB and M-

theory. These dualities are important in understanding the dictionary between the physics

and the geometry of F-theory and M-theory; they also provide an elegant derivation of

the F-theory D3 brane tadpole condition. F-theory is introduced in (§2.3) and Sen’s weak

coupling limit is reviewed in (§2.4). Tadpoles and anomalies are discussed in (§2.5); the

case of a Z2 orientifold of type IIB with O7-planes and D3 and D7 branes as well as the

D3 tadpole condition in F-theory are worked out in detail.

2If we consider the case of several D7 branes, one can show that there is a unique configuration which

satisfies the tadpole relation. Namely, two D7 branes wrapped around two smooth surfaces given respectively

by polynomials of degree 28 and 4 in the Calabi-Yau three-fold. However, such a configuration is not generic

in type IIB. Such non-generic configurations are discussed in [7], see also section 3 of the present paper.
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In (§2.6), we derive a general form of the relation (1.1) from §1 with several possible

D7 branes and O7-planes. Relation (1.1), with only one D7 and one O7 branes, is the

generic situation in Sen’s weak coupling limit. However, since singularities are necessarily

present in Sen’s weak coupling limit, (1.1) must be modified to take them into account.

Assuming that the final answer keeps the same shape, we give evidence that the modified

formula would be of type of the relation (1.3). This will be confirmed in §4, where we

analyze Sen’s template situation in its natural mathematical setting, and prove formula

(1.2) (which implies (1.3) for a larger class of varieties. For those who are mostly interested

in the Calabi-Yau case, we note that (1.3) could be proved just by mimicking the treatment

of example 1.1, using no more than the adjunction formula in the spirit of ([44]). While

this computation is straightforward, the material in §4 provides a deeper understanding of

the geometry of the situation.

2.1 Type II string theories and D-branes

There are five consistent ten-dimensional string theories. Here we will mostly be interested

in type IIA and IIB string theories. Each of these two theories admit 32 supersymmetry

generators organized into two ten-dimensional Majorana-Weyl spinors with opposite chiral-

ity in type IIA and the same chirality in type IIB. Both theories contain in their spectrum

the following NS-NS (Neveu-Schwarz ) fields: a graviton, an antisymmetric two-form which

couples to the fundamental string, and a scalar field φ (called the dilaton) which controls

the string coupling gs in each of these theories, following the relation gs ∼ e−φ. They

also contain RR (Ramond-Ramond) (p+ 1)-forms C(p+1) with (p+ 1) odd in type IIA and

even in type IIB. As a direct generalization of the charged particle in Maxwell theory, a

(p + 1)-form naturally couples to an object extended in p-spatial dimension. Indeed, as

it evolves in spacetime, a p-brane draws a world-volume W (p+1) of spacetime dimension

(p+1) on which the (p+1) potential C(p+1) can be evaluated as
∫
W (p+1) C(p+1). A p-brane

charged under a (p+ 1)-form admits a magnetic dual which is a (d− p− 4)-brane, where d

is the spacetime dimension of the ambient space in which the brane lives. They are related

by Hodge-conjugation ∗F(p+2) = Fd−p−2 acting on their field strengths Fp+2 = dC(p+1).

The objects that carry the RR charges are not seen in perturbative string theory.

It was realized by Polchinski ([37]) that p-branes are actually naturally present in string

theory as loci on which open strings can end. For that reasons, they are usually called

Dirichlet p-branes or (Dp-branes) since fixing the location of the ends of open strings is

realized by imposing Dirichlet boundary conditions. D-branes are half-BPS objects, which

means they preserve only half of the total amount supersymmetry. A string with its two

ends on the same D-brane defines a U(1) gauge field (a U(1) bundle with a connection)

on the world-volume of the brane. This is the Chan-Paton bundle. Note that since it is

defined from an open string, the Chan-Paton gauge field defined on the world-volume of a

D-brane is a NS-NS field.

Type IIA admits only Dp-branes with p even while p is odd in type IIB. More precisely,

in type IIA we have a D0 brane (also called the D-particle) and a D2 brane, their magnetic

duals are respectively the D6 and the D4 brane. There is also a D8 brane, which does

not admits a magnetic dual. In type IIB there are a D(-1) (or D-instanton), D1 (or D-

– 6 –
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string), D3, D5, D7 and D9 branes. The D7 and the D5 are the magnetic duals of the

D-instanton and the D-string. The D9 does not admit a magnetic dual in ten dimensions.

The fundamental string which is present both in type IIA and type IIB is usually called

the F-string, and couples electrically to the NS-NS two-form. The magnetic dual of the

F-string is a 5-brane (the NS5 brane) which is present both in type IIA and type IIB.

2.2 Dualities and M-theory

The five ten-dimensional string theories are related by a web of dualities which also include

eleven-dimensional supergravity. The latter is the supersymmetric field theory of gravity

with the highest possible spacetime dimension for the usual Minkowski signature. We shall

review quickly some of these dualities in order to understand the origin of F-theory.

T-duality identifies the physics of type IIA compactified on a circle of radius rA and

type IIB compactified on a circle of radius rB provided that these two radii are inverse of

each other when measured in string units. A p-brane wrapped around the T-duality circle

is T-dual to a (p− 1)-brane not intersecting the T-duality circle and vice versa.

S-duality is a symmetry which relates the weak coupling regime of one theory to the

strong coupling regime of another one. It opens a perturbative window in the strong

coupling regime of a theory. Type IIB is its own S-dual. More precisely, the S-duality

group in type IIB is a SL(2,Z) group of type IIB [27]. The S-dual theory of type IIA is an

eleven-dimensional theory. The radius of the additional eleventh dimension grows as the

coupling constant of type IIA increases. This eleven-dimensional theory is called M-theory

and at low energy it is described by eleven-dimensional supergravity. The latter admits a

three-form potential A(3) which can naturally couple to a membrane. This is the M2-brane

in M-theory and its magnetic dual is 5-brane called the M5-brane.

U-duality relates type IIB and M-theory by using a combination of type IIA/IIB T-

duality and type IIA/M-theory S-duality. More precisely, it provides a duality between

type IIB string theory compactified on a circle S1 and M-theory compactified on a torus

T 2 = S1 × S1, where the first circle is type IIA T-duality circle (of inverse radius than the

type IIB radius) and the second one is the M-theory circle that controls the string coupling

of type IIA. Type IIB on a circle is dual to M-theory compactified on a torus whose area is

shrinking to zero. The modular group of this torus precisely corresponds to the SL(2,Z)

S-duality group of type IIB theory. This geometrization of S-duality is the main interest

of F-theory.

2.3 F-theory

We consider type IIB compactified on a Calabi-Yau threefold with D3 and D7-branes. All

the branes are taken to be spacetime filling: they fill all the four-dimensional spacetime and

are wrapped around a cycle of the Calabi-Yau threefold. A D3-brane will be point-like in

the extra six dimensions and a 7-brane will wrap around a complex surface of the compact

space while filling the four-dimensional spacetime. In type IIB we have two type of strings:

the D-string has a RR charge while the F-string has a NS-NS charge. More generally, a

(p, q)-string is the bound state of p F-strings and q D-strings [48] with p, q relatively prime

– 7 –
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[41]; a (p, q)-brane is a brane on which (p, q)-strings can end [20, 24]. The usual D-brane

is a (1, 0)-brane.

The two real scalar-fields of type IIB are organized into a complex axion-dilaton field

τ = C(0) + ie−φ, (2.1)

where the axion is the RR-scalar C(0), and φ is the dilaton coming from the NS-NS sector;

we recall that eφ is the string coupling constant. The SL(2,Z) symmetry of type IIB acts

on the axion-dilaton field as a modular transformation:

τ →
aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z). (2.2)

The (p, q)-strings are the SL(2,Z) images of the fundamental string [20, 41]. The existence

of the SL(2,Z) symmetry of type IIB forces us to contemplate the occurrence of (p, q)-

branes for any relatively prime (p, q). However, this would require going above the usual

weak coupling limit of type IIB, since the axion-dilaton field also changes under SL(2,Z)

without preserving the scale of the string coupling constant: strong and weak coupling can

be mapped into each other.

F-theory is a description of type IIB string theory in the presence of (p, q) 7-branes.

These branes are non-perturbative objects which require a non-constant axion-dilation

field. Since the axion-dilaton field τ is subject to modular transformations, Vafa [45] has

proposed to describe it as the complex structure of an elliptic curve. It is conjectured

that F-theory on an elliptically fibered Calabi-Yau fourfold with a section and a base B is

equivalent to type IIB on the base B with (p, q) 7-branes at the singular loci of the elliptic

fibration. The 7-branes are wrapped around divisors of the base B.

The modular group in F-theory is also the same as the modular group of the torus

used to define U-duality between type IIB and M-theory. It follows that F-theory on an

elliptically fibered Calabi-Yau is dual to M-theory on the same manifold in the limit where

the fiber has a vanishing area. The three-form A(3) of M-theory reduces to the NS-NS

and RR two-forms of type IIA under S-duality. These two-forms under T-duality give the

NS-NS two-form of type IIB and the RR one-form of type IIB. We can then conclude that

U-duality between type IIB and M-theory implies that an M2 brane wrapping the two

torus defined by the T-duality circle of type IIA and the S-duality circle of M-theory will

give rise to (p, q)-strings in F-theory.

2.4 The weak coupling limit of F-theory with E8 fibrations

An E8 elliptic fibration ϕ : Y → B has a Weierstrass normal equation

xy2 − (z3 + fzx2 + gx3) = 0, (2.3)

written in a P
2 bundle φ : P(E) → B. Here, f and g are respectively sections of powers L4,

L6 of a line bundle L on the base B (cf. §4.1). The variety Y is a Calabi-Yau (KY = 0)

if c1(L) = c1(TB). For every point of the base, the Weierstrass equation of the elliptic

– 8 –
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fibration defines an elliptic curve with (Klein’s) modular function

j(q) = 4 ·
(24f)3

∆
. (2.4)

The function j is the generator of modular functions of weight one, and ∆ is the discrimi-

nant of the elliptic curve:

∆ = 4f3 + 27g2. (2.5)

F-theory on the elliptically fibered Calabi-Yau fourfold Y is (conjecturally) equivalent to

type IIB on the base B with q = e2πiτ . Since ℑ(τ) = e−φ = 1
gs

is the inverse of the

string coupling constant, it follows that weak coupling (gs ≪ 1) corresponds to small q and

therefore to large j since in the limit of small q we have j ≈ q−1. The 7-branes are located

at points of the base manifold B where the elliptic fiber is singular ([43]); this is where

j(τ) becomes infinite. These surfaces correspond to the vanishing locus of the discriminant

∆. A priori, the discriminant locus may have several components ∆i which correspond

to several D7-brane worldvolumes. Perturbative string theory on IIB background has two

Z2 symmetries: the world sheet parity inversion Ω and the left-moving fermion number

(−1)FL . Given a Calabi-Yau threefold X admitting an involution σ, we can mod out the

spectrum of type IIB by the orientifold projection

Ω · (−1)FL · σ∗, (2.6)

where σ acts on the type IIB field via its pulback σ∗. In order to have only D3 and

D7 branes, the involution σ is required to be holomorphic with the additional property

σ∗Ω3,0 = −Ω3,0, where Ω3,0 is the holomorphic three-form of the Calabi-Yau three-form X.

Under the action of σ, the fixed locus is made of complex surfaces and/or isolated points.

They correspond respectively to orientifold 7-planes (O7 planes) and O3 planes.

Following Sen ([43]) we set

f = −3h2 + cη,

g = −2h3 + chη + c2χ, (2.7)

where c is a constant and h, η, χ are respectively general sections of line bundles L2, L4,

L6 where L is the anticanonical bundle of B, as above. We recall that large j corresponds

to large ℑ(τ) and therefore to weak coupling. The limit c → 0 is called the weak coupling

limit since then j(τ) is large at every point of the base except in sectors where |h|2 ∼ |c|.

Since in the weak coupling limit we have

∆ ≈ −9c2h2(η2 + 12hχ), (2.8)

the zeroes of the dominant term of ∆ are supported on h = 0. Sen shows ([43]) that h = 0

determines the locations of the O7-planes, while the surface D with equation η2 +12hχ = 0

determines the locations of the D7-branes.

One can define a type IIB orientifold equivalent to the weak coupling limit of F-theory

starting with a Calabi-Yau threefold X which is the double cover of the base B branched

along h = 0 ([43]):

x2
0 = h, (2.9)
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where x0 is a section of the line bundle L. The Z2-isometry that is gauged to describe

the orientifold is x0 → −x0. The fixed points under this symmetry correspond to the

hypersurface h = 0. The variety X has vanishing first Chern class, and is therefore a

Calabi-Yau manifold.

2.5 Tadpole conditions

It is natural to consider the surface D ⊂ X obtained as inverse image of D ⊂ B. In order

to analyze D7-branes localized on D, we study the following general set-up.

We consider a D-brane wrapped around a cycle D of a Calabi-Yau manifold X. Open

strings with both end points on the D-brane define the Chan-Paton bundle E → D. The

charge of the D-brane will depend on the embedding f : D →֒ X and the topology of

the Chan-Paton bundle E. This charge can be computed by an anomaly inflow argument

([32]). An anomaly is a violation of a symmetry of the Lagrangian by quantum effects; the

anomaly of a gauge symmetry indicates an inconsistency of the theory and must vanish.

The anomaly inflow mechanism [15, 16] consists of introducing an anomalous term in the

Lagrangian to cancel the anomalous contribution of another term. The two terms will be

anomalous when considered separately, but together they give an anomaly free theory.

Since string theory is anomaly free, self-consistency requires that for each possible

anomaly there is a contribution in the Lagrangian that maintains the theory anomaly free.

In other words, identifying a possible anomaly is an opportunity to discover a new sector

of the Lagrangian of the theory. The new terms coming from anomaly inflow have been

recovered by direct string theory calculations [17, 18, 34, 42]. In the case of D-brane

configurations, an anomaly can be generated by massless chiral fermions or self-dual tensor

fields located on the intersection of two branes. The cancellation of this chiral anomaly

requires the presence of an anomalous term, usually called a Chern-Simons term or a

Wess-Zumino term. The chiral anomaly is first computed using an index theorem. The

Chern-Simons term is then deduced by a descent procedure. All these steps are purely

algebraic and are by now well understood [8, 42]. Since the Chern-Simons term is linear

in the RR potential, it gives a charge to the RR fields.

The Lagrangian for a RR field C(p+1) is of the type

L = −
1

4
F ∧ ∗F + J · C(p+1), (2.10)

where C(p+1) is a (p+1)-form and F = dC(p+1) is its field strength and ∗F its Hodge dual;

J is called the current. The equation of motion of C is

d(∗F ) = J. (2.11)

Using Gauss’s law, the charge is the integral of the current. If we are in a compact space,

the equations of motion tell us that the total charge should vanish:

QTotal =

∫
J =

∫
d(∗F ) = 0. (2.12)

This necessary condition is usually called a tadpole condition. See [38] for a peda-

gogic introduction.
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2.5.1 Tadpoles in Type IIB

The Chern-Simons term for a D-brane wrapping a cycle D (admitting a Spinc structure3)

embedded in a Calabi-Yau threefold X (f : D →֒ X) with a Chan-Paton bundle E is given

by4 ([32]):

∫

X

QD(f∗E) ∧C =

∫

D

ch(E′) ∧

√
Â(TD)

Â(ND)
∧ f∗C, E′ = E ⊗K

− 1
2

D , (2.13)

where C = C0 + C2 + C4 + C6 + C8 ∈ Heven(X) is the total RR potential and f∗C its

pullback to D; Â is the total A-roof genus ([26]); TD is the tangent bundle to D and ND

is its normal bundle; ch(E′) is the total Chern character of twisted sheaf E′ = E ⊗K
− 1

2
D

where KD is the canonical bundle of D. The appearance of the term K
− 1

2
D is related to the

Freed-Witten anomaly [22, 28]. When the cycle wrapped by the D-brane is not a Spin but

a Spinc manifold, spinors are not section of the spin bundle Spin(D): such a bundle will

suffer from a Z2 ambiguity. This ambiguity is cancelled by taking the tensor product with

K
− 1

2
D since the latter admits the same ambiguity (KD is always odd for a Spinc manifold).

This amounts to replacing E with the twisted bundle E′ = E ⊗ K
− 1

2
D . Spinors are then

sections not of Spin(D) but of the well-defined bundle Spin(D) ⊗ E′. In presence of Z2-

torsion in H2(D,Z), the canonical bundle KD will admit more than one square root, and

therefore there would be many possible Spinc structure on D ([22]). Moreover, given a line

bundle M, one can also replace KD by KD ⊗M2 so that E′ becomes E′⊗M. This reflects

the freedom to choose different Chan-Paton bundles on a D-branes ([49]). In particular,

when the manifold is Spin, one can choose M2 = KD so that the charge formula depends

only on E. In this paper, when computing charges, we will always refer to the canonical

Spinc lift E′ = E ⊗K
− 1

2
D , even when D is Spin-manifold.

There is also a Chern-Simons term for an orientifold plane wrapped around a cycle O

embedded in X as i : O →֒ X (see for example [13, 42]):

∫

X

QO ∧ C = −2p−4

∫

O

√
L̂(TO/4)

L̂(NO/4)
∧ i∗C, (2.14)

where L̂(S) is the Hirzebruch polynomial5 of S and i∗C is the pullback of total RR potential

C to O.

The Chern-Simons term of a Dp-brane or an Op-plane involves the total RR potential.

It follows that a given p-brane has not only a p-brane charge but induces as well lower brane

charges. The charge induced by the Chern-Simons term defines an element of H∗(X,Z)

called the Mukai vector . In the previous formulae QD and QO are respectively the Mukai

vector of a D-brane and and O-plane wrapped respectively around a complex surface D

3See section 4.3 of ([49]) or §3 of ([10]).
4We consider the case where the NS-NS two-form vanishes and its field-strength has no discrete torsion.
5For any d, L̂(dE) is defined as

P

k
dk L̂k(E) where L̂k(E) is the term of degree k in the expansion

L̂(E) =
P

j
L̂j(E).
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and O. In type IIB with spacetime filling branes, the component of the Mukai vector of

degree n represents the induced D(9 − n) brane charge.

For a D7 with a trivial Chan-Paton bundle E′ and an O7 brane wrapped respectively

around a complex surface D and O of a Calabi-Yau threefold X, we get the following

Mukai vectors:

QD = [D] +
χ(D)

24
ω, (2.15)

QO = −8[O] +
χ(O)

6
ω (2.16)

where ω is the unit volume element of X. We have used
∫
S

c2(S) = χ(S) and

Â(S) = 1 −
1

24
(c21 − 2c2), L̂(S) = 1 +

1

3
(c21 − 2c2), ci = ci(S). (2.17)

For a single D3 brane, we have

QD3 = −ω, (2.18)

where ω is the volume density of the Calabi-Yau three-fold X (with
∫
X
ω = 1) dual to a

point; the conventional minus sign ensures that the D3 tadpole can be solved by introducing

D3 branes of positive charge [7]. In a Z2 orientifold configuration without fluxes with ND3

D3-branes, D7-branes wrapping divisorsDi with trivial Chan-Paton vector bundle, and O7-

planes wrapping around divisors Oj , the tadpole condition (cancellation of charges) reads:

D7tadpole :
∑

i

[Di] − 8
∑

j

[Oj ] = 0, (2.19)

D3tadpole : ND3 =
1

2




∑

i

χ(Di)

24
+ 4

∑

j

χ(Oj)

24



 , (2.20)

where the indices i and j label respectively the D7-branes and the O7-planes. The factor

of 1
2 in the D3 tadpole takes into account the double counting of D3 charge in the cover

space of a Z2 Calabi-Yau orientifold. Note also that the conventional minus sign in the

charge of a single D3 brane (Q3 = −ω) ensures that the induced D3 charge coming from the

curvature of the 7-branes is cancelled by ND3 D3-branes and not by ND3-anti-D3 branes.

2.5.2 Tadpole in F-theory

F-theory compactified on an elliptically fibered Calabi-Yau four-fold Y admits a D3-tadpole

condition which is obtained by a sequence of string dualities [44]. D3-branes are the only

branes in type IIB invariant under SL(2,Z). Therefore, in contrast to (p, q) 7-branes, D3

branes in F theory are essentially the same D3 branes seen in type IIB. In a sense, D3

branes play the same role as M2-branes in M-theory and fundamental strings in type IIA

string theory. When an M2-brane is wrapped around the eleventh dimension used to relate

M-theory and type IIA, it reduces to the F-string of type IIA, while an M2 brane that does

not intersect the eleventh dimension of M-theory will give a D2-brane in type IIA. More
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precisely, the three-form of M-theory reduces to the NS-NS two-form that couples to the

F-string of type IIA while the transverse part of A(3) reduces to the RR-three form C(3)

that couples to the D2-brane. Moreover, under T-duality, a D3-brane wrapped around the

T-duality circle will give a D2-brane in type IIB, under S-duality this D2 brane corresponds

to an M2 brane transverse to the S-duality circle of M-theory. The determination of the

F-theory tadpole can be simply deduced by reading the following sequence of dualities:

IIA
S−duality
−→ M theory

U−duality
−→ Type IIB

F-string M2-brane D3 brane∫
M2×Y

B(2) ∧ Y8

∫
M3×Y

A(3) ∧ Y8

∫
M4×Y

C(4) ∧ Y8

where Y8 is a characteristic class for the four-fold Y such that
∫
Y
Y8 = χ(Y )

24 when Y is a

Calabi-Yau6 ([11]) and Md represents the d-dimensional spacetime. Compactification of

type IIA string theory on a Calabi-Yau four-fold Y to two dimensions leads to a tadpole

term for the NS-NS two-form B(2) that couples to the fundamental string [46]. This tad-

pole is proportional to the Euler characteristic of Y . Since the corresponding type IIA

interaction
∫
B(2) ∧ Y8 does not depend on the dilaton, it can be lifted to M-theory using

S-duality, but the NS-NS two-form should be replaced by the three-form A(3) which couples

to the M2 brane ([11, 21]). This new interaction
∫
A(3) ∧ Y8 can be seen as a quantum

correction to the classical Chern-Simons term
∫
A(3) ∧ dA(3) ∧ dA(3) of eleven-dimensional

supergravity. If we assume that there are no fluxes, the vanishing of the tadpole requires

the presence of NM2 M2 branes, so that NM2 = χ(Y )
24 (see chapter 10 of [12]). Finally,

using U-duality between M-theory and F-theory, there is a similar tadpole for F-theory

compactified on the Calabi-Yau four-fold Y , but this time for the four-form C(4) which

couples to the D3 brane. The tadpole in type IIA is cancelled by the presence of NS-NS

charge, in M theory it is cancelled by the presence of M2-branes charge while in F-theory

compactified on an elliptically fibered Calabi-Yau four-fold Y , the tadpole is cancelled by

D3 brane charge. If the latter is solely coming from ND3 D3 branes, it gives ([44]):

ND3 =
χ(Y )

24
. (2.21)

2.6 Matching F-theory and type IIB tadpole conditions

Consistency between type IIB and the F-theory D3 tadpole implies that

2χ(Y ) =
∑

i

χ(Di) + 4
∑

j

χ(Oj), (2.22)

by simply equating the expressions obtained for the number of D3 branes (ND3) required in

these two theories to satisfy the D3-tadpole condition. It is interesting to note that the two

sides of this equality involve objects defined in different regimes. The elliptically fibered

6More precisely, we have Y8 = − 1
192

(c4
1 − 4c2

1c2 + 8c1c3 − 8c4), where here the Chern classes ci are those

of Y . When Y is a Calabi-Yau, c1 = 0 and Y8 = c4
24

.
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Calabi-Yau four-fold Y is introduced to describe regimes in which the string coupling can

be strong in presence of possible (p, q) 7-branes; on the other hand, the l.h.s. of the equality

involves solely O-planes and (1, 0) D7 branes which are only well-defined at weak coupling.

This is well illustrated for example in ([43]), where an O7-plane is shown to correspond

in strong coupling to a system of (p, q) 7-branes that coincide when the coupling becomes

weak enough. The usual monodromy of the axion-dilaton field around such an O7-plane is

reproduced as the total monodromy around the corresponding system of (p, q) 7-branes at

strong coupling. It is therefore natural to consider the previous relation in a weak coupling

limit of F-theory.

In Sen’s weak coupling limit for E8 elliptic fibrations, and for general choices of h, η,

χ (and hence of f , g), we have a unique orientifold plane O and a unique D7 brane D in

type IIB. Arguing as above, consistency between type IIB and F-theory D3 tadpole would

give the equality presented in the introduction:

2χ(Y )
?
= χ(D) + 4χ(O) . (2.23)

However, equation (2.23) should be parsed carefully. The general arguments in §2.5

assume implicitly that all cycles under exam are nonsingular (for example, the expression

of the Chern-Simons term assumes that the tangent bundle TD exists), while this is not

the case for the surface D supporting the D7 brane in Sen’s weak coupling limit. In the

base B, the D7-brane is on the surface D defined by the equation η2 + 12hχ = 0. In the

the Calabi-Yau threefold X, the inverse image D of D is defined by the equation

η2 + 12x2
0χ = 0. (2.24)

This surface is singular along the double curve η = x0 = 0, and has pinch points (cf. [25],

p. 617) at η = x0 = χ = 0.

There are in general several ‘natural’ definitions of Euler characteristic (or Chern

class) of a singular variety, all giving the ordinary topological notions when applied to a

nonsingular variety (see for example the appendix of [7]). The Euler characteristics of

the Calabi-Yau fourfold Y and of the orientifold O are unambiguously defined, since these

varieties are assumed to be nonsingular; but it is not clear how the term χ(D) should be

interpreted in equation (2.23). Turning things around, we could consider equation (2.23)

as giving a ‘prediction’ for χ(D). It is then natural to ask if this prediction matches a

natural definition of Euler characteristic for a more general singular variety.

We will formulate some more concrete speculations along these lines in §5.

Another viewpoint on this situation is that, for more conventional Euler characteristics,

the relation (2.23) should only be satisfied modulo a contribution from the singularities

of D, which would vanish in the smooth case. The task amounts then to evaluating this

correction term precisely.

This is accomplished in §4, with the result stated in the introduction: adopting the

Euler characteristic of the normalization D ofD as the natural notion of Euler characteristic

for the singular surface D, we will find that the correction term needed in order to recover

the tadpole relation (2.23) is evaluated by the number of pinch-points of D. Note that D

is nonsingular, and that it can be identified as the blow-up of D along its singular locus.
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Example 1.1 shows this phenomenon at work in a concrete instance, and the reader

should have no difficulties adapting the proof given there to analyze the general case consid-

ered in §2.4, reaching the same conclusion. The physics underlying this particular example

is analyzed in detail in ([7]).

3 Entr’act

Now that we have set the stage, we can address one doubt that may be lingering in the

mind of the reader: is it truly necessary to invoke the presence of singularities in order to

verify the tadpole condition? Might there not exist simpler configurations, consisting of

D-branes supported on nonsingular surfaces, and simply satisfying the Euler characteristic

constraints imposed by the tadpole condition?

In general (but with one notable exception, see below) this appears not to be the case:

the relations are known not to hold when applied to examples where all loci are assumed

to be smooth ([7]).

In F-theory, the seven-branes only wrap surfaces over which the elliptic fibration is

singular. This restricts seriously the allowed configurations. For example, if we restrict

ourself to Z2-orientifolds, in type IIB, the typical D7 configuration is composed of an O7-

plane and a D7-brane; they wrap two complex surfaces that intersect along a curve. The D7

tadpole condition defines a linear relation among the homology cycles of these two surfaces.

In the case at hand, the O7 is supported on a smooth surface of class c1(L) in the

Calabi-Yau threefold X; the D7 tadpole condition forces the D7 to be supported on a

surface or a union of surfaces of total class c1(L
8).

Now, if we assume that the D7 is supported on a single, smooth surface, then adjunction

shows immediately that the tadpole matching condition of IIB and F-theory will simply not

be satisfied. From a type IIB perspective, without any input from Sen’s sharp description

of the orientifold limit of F-theory, this would have been the typical configuration and

would have not satisfied the tadpole matching condition of IIB and F-theory. However,

this mismatch can be attributed to a naive identification of the typical configuration.

Assuming that the D7 is wrapped on a union of general smooth surfaces of varying

classes equal to multiples of c1(L), one can verify (again using adjunction) that the match-

ing is obtained for precisely one configuration: the O7-plane and two D7 branes wrapped

around surfaces of classes c1(L), c1(L
7), respectively. However, this configuration does not

seem to be compatible with Sen’s description of the orientifold limit of F-theory. Thus,

singularities in the support of the D7 brane do appear to be a necessary feature of the

situation, at least from the point of view of Sen’s limit. As we have illustrated in Exam-

ple 1.1, and as we are going to verify in general in §4, it is possible to satisfy the tadpole

conditions within Sen’s description, if we take seriously the presence of singularities.

The identity we will obtain by doing so will in fact realize the tadpole conditions at

the level of Chern classes, and in arbitrary dimension. The configuration of two smooth

surfaces mentioned above does not appear to generalize in the same fashion. This is further

evidence that the configuration cannot be produced by a geometric construction analogous

to Sen’s description.
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4 Mathematics

4.1 Discriminants of elliptic fibrations

We consider the following situation, extending the set-up of §2.4. Let B be a nonsingular

compact complex algebraic variety of any dimension, and let ϕ : Y → B be an elliptic

fibration, realized by a Weierstrass normal equation

y2x− (z3 + f zx2 + g x3) = 0 (4.1)

in a P
2-bundle7 φ : P(E) → B. Here (as in §2.4) f , resp. g are sections of powers L4,

resp. L6 of a line bundle L on B. We can take E = O⊕L3 ⊕L2; the left-hand-side of (4.1)

realizes Y as the zero-scheme of a section of OP(E)(3) ⊗ φ∗L6 in P(E).

We assume that the base loci of the linear systems |L4|, |L6| are disjoint, and that f ,

g are general. We let ∆ ⊂ B denote the discriminant hypersurface, given by

4 f3 + 27 g2 = 0 ;

∆ is the zero-locus of a section of L12. The following is observed in [31], 1.5 (cf. [33],

Proposition 2.1; and [35] for Weierstrass models):

Lemma 4.1. With notation and assumptions as above:

• Y is nonsingular and ϕ is flat;

• for p 6∈ ∆, the fiber ϕ−1(p) is a smooth elliptic curve;

• for p ∈ ∆, f(p) 6= 0, the fiber ϕ−1(p) is a nodal cubic;

• for p ∈ ∆, f(p) = g(p) = 0, the fiber ϕ−1(p) is a cuspidal cubic.

We will denote by F , resp. G the hypersurfaces determined by f , g, and we will

assume that F and G are nonsingular and intersect transversally. We also assume that ∆

is nonsingular away from the codimension 2 locus

C : f = g = 0 ,

which is a nonsingular variety by the transversality hypothesis. All these assumptions are

satisfied (by Bertini) if e.g., L is very ample.

As noted in §2.4, Y is a Calabi-Yau variety if and only if L is the anticanonical bundle

of B ([31], 1.5 (i)). However, this hypothesis will not be needed for the main results in this

section.

7We use the projective bundle of lines in E .

– 16 –



J
H
E
P
0
3
(
2
0
0
9
)
0
3
2

∆

C

Figure 1. Local picture of the discriminant

4.2 Sethi-Vafa-Witten formula

Our first task is to extend the Sethi-Vafa-Witten formula (cf. §1) to the situation described

above. We interpret this formula as a comparison between the total Chern class of the

elliptic fibration Y and the total Chern class of the hypersurface G.

Proposition 4.2. Let ϕ : Y → B be an elliptic fibration, as above. Then

ϕ∗ c(Y ) = 2 ι∗c(G) ,

where ι : G→ B is the embedding of G.

Here and in the following, we denote by c(X) = c(TX) ∩ [X] the total ‘homology’

Chern class of the tangent bundle of X, if X is a nonsingular variety.

For the proof of Proposition 4.2, we rely on the calculus of constructible functions

and Chern-Schwartz-MacPherson (CSM) classes on (possibly) singular varieties. We recall

that a constructible function on a (complex, compact, possibly singular) variety X is a

Z-linear combination of characteristic functions of closed subvarieties of X. Constructible

functions on X form an abelian group F (X), which is covariantly functorial: if ψ : X → Y

is a proper morphism of varieties, then ψ induces a homomorphism ψ∗ : F (X) → F (Y )

uniquely defined by the requirement that if Z ⊂ X is a closed subvariety, then

ψ∗(11Z)(p) = χ(ψ−1(p) ∩ Z) ,

where 11Z is the characteristic function of Z, and χ denotes topological Euler characteristic.

To each constructible function α ∈ F (X) we can associate a CSM class in the Chow group

of X:

cSM(α) ∈ A∗(X) ,

such that

(1) if X is nonsingular, then cSM(11X) equals the total Chern class of X:

cSM(11X) = c(X) ;

(2) the assignment of CSM classes is functorial, in the sense that if ψ : X → Y is a

proper morphism then ∀α ∈ F (X)

ψ∗(cSM(α)) = cSM(ψ∗(α)) .
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In view of (1), one defines the Chern-Schwartz-MacPherson class of a (possibly singular)

variety X as

cSM(X) := cSM(11X) ∈ A∗(X) :

thus, cSM(X) = c(X) if X is nonsingular, but cSM(X) is defined for arbitrary varieties X.

It easily follows from (2) that the degree of the zero-dimensional component of X is the

topological Euler characteristic χ(X) of X.

In these definitions, the reader may replace the Chow group with ordinary integral

homology. This topological setting was the context of the original result of MacPherson

([30]) and of earlier, independent work of Marie-Hélène Schwartz ([39, 40]); MacPherson’s

and Schwartz’s very different definitions are known to lead to the same class ([6, 14]). For

a rapid review of the definition of cSM see [23], §19.1.7. An alternative is given in [4],

Definition 3.2.

Although the statement of Proposition 4.2 only involves nonsingular varieties, its proof

is considerably streamlined by using the notions we just recalled, which were introduced

for the study of singular spaces.

Proof of Proposition 4.2. By Lemma 4.1 and the definition of push-forward of constructible

functions recalled above, we have

ϕ∗(11Y ) = 11∆ + 11C ;

by the properties of CSM classes recalled above,

ϕ∗c(Y ) = ι∆∗cSM(∆) + ιC∗c(C) ,

where ι∆, ιC denote the corresponding embeddings (note that C is nonsingular).

The class cSM(∆) may be computed by using Theorem I.4 from [2]:

cSM(∆) = c(TB) ∩

(
[∆]

1 + ∆
+

1

1 + ∆

(
s(∆s, B)∨ ⊗O(∆)

))
, (4.2)

where ∆s denotes the singularity subscheme of ∆ (defined locally by the ideal of partial

derivatives of an equation for ∆), s(∆s, B) is its Segre class in B (cf. [23], Chapter 4),

and O(∆) is the line bundle of which ∆ is a section. By the assumptions detailed at the

beginning of the section, ∆s is supported on C. The differential of the (local) equation for

∆ is 12f2 df + 54g dg; the differentials df , dg are linearly independent in a neighborhood

of C, and it follows that ∆s has ideal

(f2, g) ,

that is, it is the complete intersection of G and the ‘double’ 2F of F . Since the complete

intersection of F and G is C, we conclude

s(∆s, B) =
2[C]

(1 + 2F )(1 +G)
.
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Applying (4.2) we get:8

cSM(∆) = c(TB) ∩

(
[∆]

1 + ∆
+

1

1 + ∆

2[C]

(1 − 2F )(1 −G)
⊗O(∆)

)
(4.3)

= c(TB) ∩

(
[∆]

1 + ∆
+

1

1 + ∆

2[C]

(1 + ∆ − 2F )(1 + ∆ −G)

)
(4.4)

Since ∆ = 3F = 2G as divisor classes, and [C] = F · [G], this shows

cSM(∆) = c(TB) ∩

(
[∆]

1 + ∆
+

1

1 + ∆

2[C]

(1 + F )(1 +G)

)
= c(TB) ∩

(2 + F ) · [G]

(1 + F )(1 +G)
.

Using this, and again the fact that C is the complete intersection of F and G,

ϕ∗c(Y ) = c(TB) ∩

(
(2 + F ) · [G]

(1 + F )(1 +G)
+

[F ][G]

(1 + F )(1 +G)

)
(4.5)

= c(TB) ∩
2 [G]

1 +G
= 2 ι∗c(G) , (4.6)

giving the statement.

Since the Euler characteristic agrees with the degree of the top Chern class, we obtain

the following statement (in terms of the class of the line bundle L introduced at the

beginning of the section):

Corollary 4.3. Let Y be an elliptic fibration on a nonsingular compact variety B, as

above. Let ℓ = c1(L), and ci = ci(TB), and let b = dimB. Then

χ(Y ) = 12 ℓ
(
cb−1 − 6 ℓ cb−2 + 62 ℓ2 cb−3 + · · · + (−6)b−1 ℓb−1

)
.

Proof. Since G has class 6ℓ,

ι∗c(G) = c(TB)
6ℓ

1 + 6ℓ
∩ [B] .

Applying Proposition 4.2, and reading off the term of dimension 0, yields the statement.

Proposition 4.2 and Corollary 4.3 hold regardless of any Calabi-Yau hypothesis. As

observed above, Y is a Calabi-Yau variety if and only if ℓ = c1; in this case, Corollary 4.3

reproduces Proposition 2 in §8 of [29]. Some values for χ(Y ) are given in the table 1.

The third line in the table (that is, Corollary 4.3 for dimB = 3 and ℓ = c1) reproduces

formula (2.12) in [44]. In this sense, Proposition 4.2 should be viewed as a generalization of

the Sethi-Vafa-Witten formula—holding in arbitrary dimension, for E8 elliptic fibrations

that are not necessarily Calabi-Yau varieties, and at the level of total Chern classes.

8Here we use the simple calculus of the operations ⊗, ∨, see §2 in [1]. The expression 2[C]
(1+2F )(1+G)

is

viewed as c(A)−1 ∩a, where A is a vector bundle with roots 2F , G, and a is the homology class 2[C]. Now,

for all vector bundles A:

(c(A)−1
∩ a)∨ = c(A∨)−1

∩ a
∨

,

and for all line bundles M

(c(A)−1
∩ a) ⊗M = c(M)rkAc(A⊗M)−1

∩ (a ⊗M) .

The classes a∨ and a ⊗ M are both linear in a. For a pure-dimensional a, they equal (−1)codimaa,

c(M)−codima ∩ a, respectively.
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dim B χ(Y ) for Y a Calabi-Yau (ℓ = c1):

1 12 ℓ 12 c1

2 12 ℓ(c1 − 6 ℓ) 12 c1(−5 c1)

3 12 ℓ(c2 − 6 ℓc1 + 62ℓ2) 12 c1(30 c
2
1 + c2)

4 12 ℓ(c3 − 6 ℓc2 + 62 ℓ2c1 − 63ℓ3) 12 c1(−180 c31 − 6 c1c2 + c3)

5 12 ℓ(c4 − 6 ℓc3 + 62 ℓ2c2 − 63 ℓ3c1 + 64ℓ4) 12 c1(1080 c
4
1 + 36 c21c2 − 6 c1c3 + c4)

Table 1. Euler characteristic of E8 elliptic fibrations

4.3 Tadpole relation

Our next goal is to analyze the tadpole relation of §2.6 in the context of the situation

presented in §4.1: that is, to obtain a precise relation for the Euler characteristics, holding

in arbitrary dimension, and bypassing the Calabi-Yau hypothesis. We first obtain a Chern

class relation involving the discriminant determined in §4.1 and the discriminant at weak

coupling limit; then we interpret the result in terms akin to those presented in §2.6.

Recall that the weak coupling limit is obtained by viewing the defining equation (4.1)

y2x− (z3 + f zx2 + g x3) = 0

as a perturbation of the degenerate fibration

y2x− (z3 + (−3h2) zx2 + (−2h3)x3) = 0 ,

where h is a general section of L2. More precisely, we let
{
f = −3h2 + c η

g = −2h3 + c hη + c2 χ

where c is a scalar, and η, resp. χ are general sections of L4, resp. L6. For general c, we

are in the situation presented in §4.1; the weak coupling limit is obtained by letting c→ 0.

The resulting family of discriminants has flat limit

h2(η2 + 12hχ)

for c = 0. The corresponding hypersurface ∆ is the union of a (double) nonsingular

component O with equation h = 0, and the singular hypersurface D given by η2 + 12hχ =

0. Under our standing generality assumptions, the only singularities of D are along the

(transversal) intersection h = η = χ = 0, a nonsingular subvariety S of codimension 3 in

B. In fact, as d(η2 +12hχ) = 2η dη+12hdχ+12χdh and dη, dχ, dh are independent along

S, it follows that the singularity subscheme Ds of D coincides with S.

We now consider the problem of expressing ϕ∗(c(Y )) in terms of this limiting dis-

criminant, analogously to Proposition 4.2. The following should be viewed as a ‘limiting

Sethi-Vafa-Witten formula’:
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Lemma 4.4. With notation as above,

ϕ∗c(Y ) = cSM(11D + 211O − 11S) .

Proof. Since O and S are nonsingular,

cSM(O) = c(TB) ∩
[O]

1 +O
, cSM(S) = c(TB) ∩

[S]

(1 +O)(1 + F )(1 +G)

by the normalization property (1) of CSM classes, and noting that η, resp. χ are sections

of L4 ∼= O(F ), resp. L6 ∼= O(G).

The class cSM(D) is evaluated by again applying Theorem I.4 from [2]:

cSM(D) = c(TB) ∩

(
[D]

1 +D
+

1

1 +D

(
s(Ds, B)∨ ⊗O(D)

))
.

We have already observed that this scheme is in fact S, hence

s(Ds, B) = s(S,B) =
[S]

(1 +O)(1 + F )(1 +G)
.

Applying the ‘calculus’ recalled in footnote 8:

cSM(D) = c(TB) ∩

(
[D]

1 +D
−

1

1 +D

[S]

(1 +O)(1 + F )(1 +G)

)
.

Using that [D] = 2[F ] = [O] + [G], [G] = [O] + [F ], and [S] = [O][F ][G], it follows that

cSM(D) + 2cSM(O) − cSM(S) = c(TB) ∩
2[G]

1 +G
= 2 ι∗c(G) .

The statement follows then immediately from Proposition 4.2.

Remark 4.5 (Verdier specialization). According to Lemma 4.4, the two constru-

ctible functions

11∆ + 11C and 11D + 211O − 11S

have the same CSM class in A∗(B). It is natural to ask for ‘systematic’ ways to produce

such identities. One possibility consists of studying the Verdier specialization σX of the

constant function 1 from the total space of a smoothing family for a hypersurfaceX. For an

efficient summary of this notion, introduced in [47], we recommend §5 of [36]; the function

σX is essentially defined by taking Euler characteristics of nearby fibers. In the case at

hand, the reader can verify that

σ∆ = 11∆ − 2 11C + 211C′

and

σ∆ = 11D + 211O − 611Q + 311S − 11O′ + 511Q′ − 311S′ ,

where Q = O ∩D, and primed letters denote the intersection of the corresponding locus

with a general element of the linear system of the hypersurface (use [36], Proposition 5.1).
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Now, it is easy to see that the CSM class of the specialization function σX only depends on

the divisor class of X (in fact, it reproduces the Chern class of the virtual tangent bundle

of X); hence

cSM(σ∆) = cSM(σ∆) .

Further, one can verify directly that

cSM(611Q − 311C + 11O′ − 411S − 511Q′ + 211C′ + 311S′) = 0 :

this is straightforward since every locus appearing on the l.h.s. is a nonsingular complete

intersection. Combining these identities yields precisely that

cSM(11∆ + 11C) = cSM(11D + 211O − 11S) .

This gives an alternative argument for Lemma 4.4, bypassing the use of [2] and shedding

some light on the reason why such an identity should hold in the first place.

Next, we consider (as in §2.4) the double cover ρ : X → B ramified along the smooth

hypersurface O. Note that X has vanishing canonical class when [O] = 2 c1(TB) ∩ [B]; it

follows that X is a Calabi-Yau if Y is a Calabi-Yau. However, again we point out that this

hypothesis is not necessary for the considerations in this section.

We denote by D the inverse image of D in X. The local analysis summarized in

§2.6 goes through unchanged in the situation considered in this section. Explicitly: X

may be realized (as in §2.6) by putting h = x2
0; we may use η, χ, x0, x1, . . . , xr as local

coordinates in X, and D is then defined (locally) by η2 + 12x2
0χ = 0. This hypersurface is

singular along η = x0 = 0, corresponding to the inverse image of Q = O∩D, and ‘pinched’

along η = χ = x0 = 0, that is, the inverse image S = ρ−1(S). Note that ρ restricts

to an isomorphism S → S. We consider the resolution D of D obtained by blowing up

η = x0 = 0: locally, the blow-up of X is covered by two charts, and we may choose local

coordinates in one of these charts as follows:

η̃, χ, x̃0, x1, . . . , xr

so that the blow-up map is given by

(η̃, χ, x̃0, x1, . . . , xr) 7→ (η̃x̃0, χ, x̃0, x1, . . . , xr) .

In these coordinates, the inverse image of D is given by the equation x̃2
0(η̃

2 + 12χ) = 0;

therefore the blow-up D of D has equation

η̃2 + 12χ = 0 ,

and in particular it is nonsingular in this chart. The situation on the other local chart of

the blow-up can be analyzed similarly, with the same conclusion: blowing up the singular

locus of D resolves its singularities.9

9If D is a surface, as in §2.6, this is of course the standard resolution of the Whitney umbrella obtained

by blowing up along the singular curve.
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Note that the map D → D → D is generically 2-to-1, and 1-to-1 precisely over S. We

denote by

π : D → B

the composition D ։ D ։ D →֒ B.

Theorem 4.6. With notation as above,

2ϕ∗c(Y ) = π∗c(D) + 4 c(O) − ρ∗c(S)

in A∗(B).

Proof. The map π is 2-to-1 onto the complement of S in D, and 1-to-1 over the singular

locus S of D. Therefore, by definition of push-forward of constructible functions,

π∗(11D) = 2 11D − 11S .

It follows that

π∗(11D) + 4 11O − ρ∗(11S) = 2 11D + 411O − 2 11S ,

and hence, by Lemma 4.4,

cSM(π∗(11D) + 4 11O − ρ∗11S) = 2 cSM(11D + 211O − 11S) = 2ϕ∗c(Y ) .

The formula given in the statement follows from this by the properties (1), (2) of CSM

classes recalled in §4.2.

Considering only the term of dimension 0 in Theorem 4.6 gives

Corollary 4.7.

2χ(Y ) = χ(D) + 4χ(O) − χ(S) .

If dimB = 3, so that S consists of a discrete set of points, then χ(S) simply equals

the number of pinch-points of the surface D. This relation is the corrected version of

the tadpole relation (2.23) promised in §2.6. It is generalized to arbitrary dimension, and

emancipated from the Calabi-Yau hypothesis.

5 Speculation

The Euler characteristic χ(D) appearing in Corollary 4.7 could be interpreted as the stringy

Euler characteristic of D, although D is not normal: the blow-up D → D is ‘crepant’ in the

sense that its differential is regular in codimension 1. By the same token, the push forward

of c(D) should be interpreted as the stringy Chern class of the singular hypersurfaceD ⊂ B,

cf. [3] and [19].

In fact, the machinery of [3] produces other ‘natural’ notions of Chern class (and, in

particular, of Euler characteristic) for singular varieties, depending on how the relative

canonical divisor of a resolution is handled. For a review of these notions, the reader
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is addressed to [5]. Briefly: if ν : Z → Z is a resolution of a singular variety Z, the

‘celestial integral’ ∫

Z
11(Kν) dcZ

determines a class in (A∗Z)Q, which may be taken as defining a ‘total Chern class’ for Z.

Here, Kν denotes the chosen notion of relative canonical divisor of ν, which in turns depends

on how ωZ is defined:

• Taking ∧dimZΩ1
Z leads to the arc Chern class10 of Z, carc(Z);

• Taking the double-dual of ∧dimZΩ1
Z leads to the stringy Chern class cstr(Z). This

notion was independently defined and studied in [19].

The degree of the Chern class recovers the corresponding notion of Euler characteristic. If

Z is nonsingular to begin with, all these notions coincide and simply reproduce the usual

Chern class and (topological) Euler characteristic of Z.

For the situation considered in §4, we have the resolution

ν : D → D

obtained by blowing up a codimension 1 locus in D. A computation in local coordinates

shows that ΩdimD
D|D

is supported on the inverse image S = ν−1(S) of the pinch locus of

D; this is a codimension 2 locus, and it follows that the relative canonical divisor in the

‘stringy’ sense vanishes; therefore, cstr(D) is evaluated by (the ‘identity manifestation’ of)

∫

D
11(0) dcD .

The resolution D is not adequate to compute carc(D), since ΩdimD
D|D

is not invertible

(that is, D does not ‘resolve’ the data in the sense of [3], §3.3). In order to obtain a

resolution satisfying this condition, we blow up D further along S: let D̂ be this blow-up,

and denote by E the exceptional divisor; and let ν̂ : D̂ → D be the composition of the two

blow-ups. Then the stringy relative canonical divisor is E, while ΩdimD
bD|D

∼= O(2E).

This prompts us to propose the following (speculative) definition: for every nonnegative

integer m, we can let c(m)(D) be the class in (A∗D)Q corresponding to the celestial integral

∫

D̂
11(mE) dc bD

,

so that c(1)(D) = cstr(D) and c(2)(D) = carc(D). As we will see in a moment, the class

c(m)(D) has a well-defined ‘limit as m → ∞’, which we will denote c(∞)(D); the corre-

sponding degrees will be denoted χ(m)(D), χ(∞)(D).

Theorem 5.1. With notation as in above and as in §3:

2ϕ∗c(Y ) = c(∞)(D) + 4 c(O) .

10This is called ‘Ω flavor’ in [3] and [5], as opposed to the (stringy) ‘ω flavor’.
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This statement is proved by computing c(m) explicitly; the following lemma does this,

and gives a meaning to the limit of the class c(m) as m→ ∞.

Lemma 5.2. With notation as above,

c(m)(D) = π∗c(D) − c(S) +
2

1 +m
c(S) .

Proof. By definition of the integral (see [5], §7) we get

c(m)(D) := ν̂∗

(
c(T D̂)

(1 + E)

(
1 +

E

1 +m

)
∩ [D̂]

)
= ν̂∗

(
c(T D̂) ∩ [D̂] −

m

1 +mE

c(TE) ∩ [E]

)
(5.1)

= ν̂∗cSM

(
11 bD

−
m

1 +m
11E

)
. (5.2)

Since S is nonsingular and of codimension 2 in D, the exceptional divisor E is a P
1-bundle

over S. As S maps isomorphically to S, we have

ν̂∗(11E) = 2 · 11S .

By the same token,

ν̂∗(11 bD
) = π∗(11D) + 11S .

Thus

ν̂∗

(
11 bD

−
m

1 +m
11E

)
= π∗(11D) − 11S +

2

1 +m
11S ,

and the statement follows by applying cSM and using its properties (1), (2) listed in §4.

The theorem follows immediately from Lemma 5.2 and Theorem 4.6.

Theorem 5.1 recovers the tadpole relation of §2.6 ‘without correction terms’:

2χ(Y ) = χ(∞)(D) + 4χ(O) ,

in full alignment with the string theory prediction obtained in §2.6. However, it is of course

unclear at this point whether this is due to a lucky accident, or whether the formalism

leading to the definition of c(∞)(D) can really account for the relevant information at a

good level of generality.
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[36] A. Parusiński and P. Pragacz, Characteristic classes of hypersurfaces and characteristic

cycles, J. Algebraic Geom. 10 (2001) 63.

[37] J. Polchinski, Dirichlet-Branes and Ramond-Ramond Charges,

Phys. Rev. Lett. 75 (1995) 4724 [hep-th/9510017] [SPIRES].

[38] R. Rabadán and F. Zamora, Dilaton tadpoles and D-brane interactions in compact spaces,

JHEP 12 (2002) 052 [hep-th/0207178] [SPIRES].

[39] M.H. Schwartz, Classes caractéristiques définies par une stratification d’une variété
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